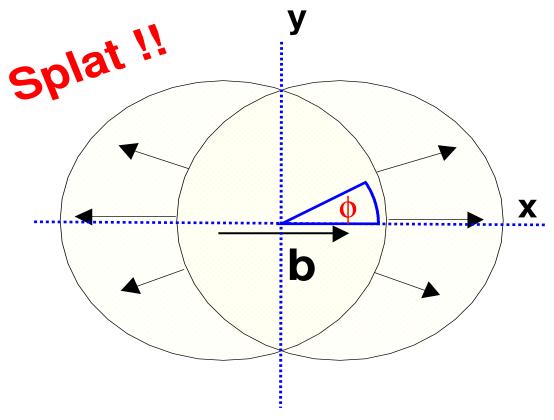
Elliptic Flow in Heavy Ion Collisions



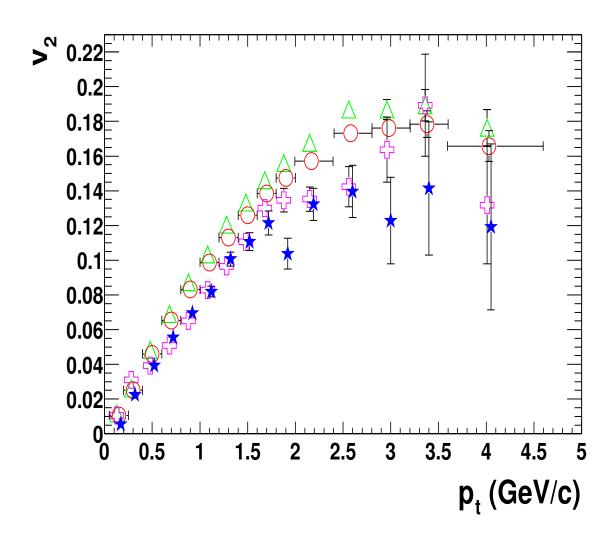
Measure the anisotropy:

$$rac{dN}{d\phi} = N(1+2\,v_2\cos(2\phi)+\cdots)$$
 where $v_2 = \langle\cos(2\phi)
angle$

Can also measure elliptic flow as function of transverse momentum:

$$\frac{1}{p_T}\frac{dN}{dp_T\,d\phi} \ = \ \frac{1}{p_T}\frac{dN}{dp_T}\left(1+2\,v_2(p_T)\cos(2\,\phi)\cdots\right)$$
 Then $v_2(p_T)\equiv\langle\cos(2\,\phi)\rangle_{p_T}.$

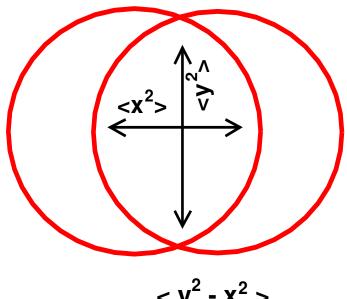
Amazing Results from RHIC:



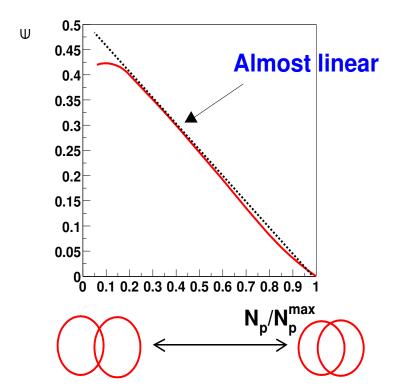
- ullet $v_2(p_T)$ increases as a function p_T until $p_T pprox 2.0\,{
 m GeV}$ and then flattens at $v_2 pprox 0.15$
- v_2 is large even at $p_T \approx 4.0\,GeV$. There is a 1.8 to 1 asymmetry between x and y.

Elliptic Flow is HUGE!!

Categorize the collision geometry:



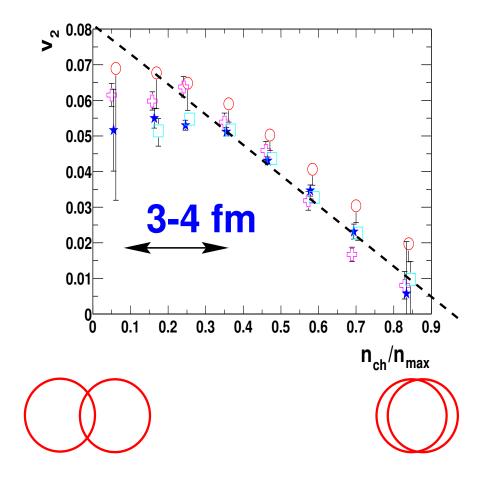
$$\in_{x} = \frac{< y^{2} - x^{2} >}{< y^{2} + x^{2} >}$$



ullet $N_p\equiv$ is the number of nucleons that actually collide

Measurements of the integrated Elliptic Flow at RHIC:

Look at stars!



- ullet If nothing changes as a function of centrality then expect: $v_2 \propto \epsilon$
- ullet Up to corrections in periperal collisions: $v_2 \propto \epsilon$

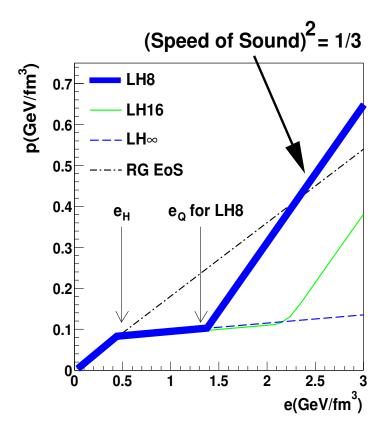
These corrections "set in" on a scale of pprox 3-4 fm

Ideal Hydrodynamic Simulations of Heavy Ion Collisions:

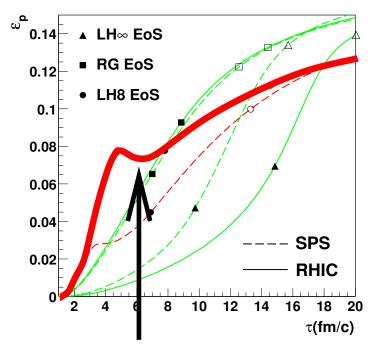
- ullet Assume the Momentum Degradation Length $\ell_{mfp}=0$
- Write the stress energy tensor:

$$T^{\mu\nu} = (e+p) u^{\mu} u^{\nu} + p g^{\mu\nu}$$

- ullet Input the equation of state: p(e)
- Solve the equations of motion: $\partial_{\mu}T^{\mu\nu}=0$



The hydrodynamic solution:

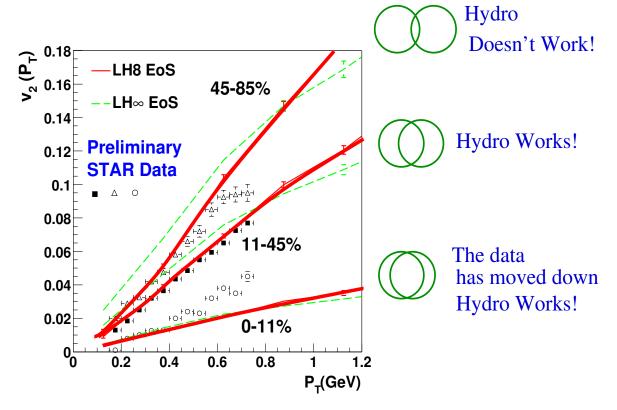


Goes into transition region at 5 fm/c

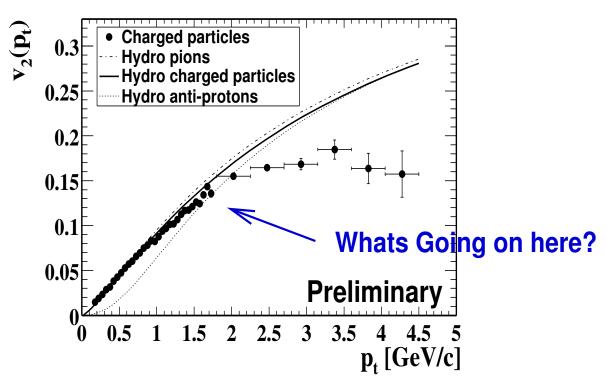
- ullet v_2 rapidly rises during the plasma stage pprox 5 fm/c
- v_2 then stalls in the transition region.
- Elliptic flow captures the early evolution.
- ullet Much of the details of the subsequent evolution do not matter for v_2

Calculate the thermal spectrum just below T_c

Compute $v_2(p_T) \equiv \langle \cos(2\phi) \rangle_{p_T}$



by Pasi Houvinnen



Is Hydro believable?

- ullet Hydro nicely explains the rise with p_T of elliptic flow.
- It fairly well reproduces the observed centrality dependence of elliptic flow.
- It fairs less well in peripheral collisions, at forward rapidity, and at lower energies where the multiplicity in the collision is smaller.

What changes if $\ell_{mfp} \neq 0$?

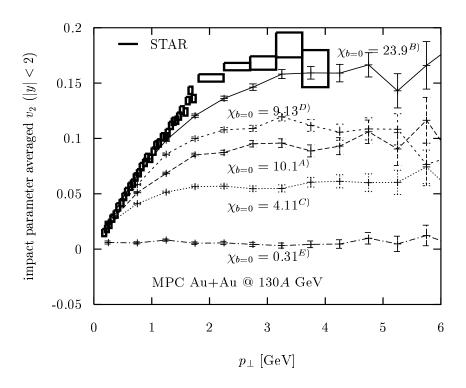
If we need

$$\ell_{mfp} \ll \frac{1}{2\pi T}$$

in order to explain the observed elliptic flow, the hydrodynamic interpretation of elliptic flow must be abandoned!

Solution of the Boltzmann Equation (BE): Denes Molnar

1000 Classical Massless Particles with Constant X-Sections $\sigma_0 pprox 10-20\,\mathrm{mb}$



- ullet The BE predicted a flattening of v_2 at high p_T .
- ullet The observed v_2 breaks down consistently with viscous effects.
- 1. Can we understand this curve analytically?
- 2. Why do the cross sections need to be

HUGE!??

How valid is Hydro? How much Entropy is produced?

$$\frac{d(\tau s)}{d\tau} = 0$$
 (Ideal Case) $\frac{d(\tau s)}{d\tau} = \frac{\frac{4}{3}\eta}{\tau T}$ (Viscous Case)

For hydrodynamics to be valid, the entropy produced over the time scale of the system, τ , must be small compared to the total :

$$\tau \frac{\frac{4}{3}\eta}{\tau T} \frac{1}{\tau s} \equiv \Gamma_s \frac{1}{\tau} \ll 1$$

- ullet $\Gamma_s \equiv rac{rac{4}{3}\eta}{e+p}$ is the Sound Attenuation Length.
- ullet Γ_s is the scientific way to talk about the mean free path.
- The mean free path should be less than the expansion rate $\frac{1}{\tau}$.

Estimates of η for the QGP and Heavy Ion Collisions

Perturbative QCD - Arnold, Moore, Yaffe.

• $\eta \approx 150 \ T^3 \frac{1}{g^4}$.

Based upon kinetic theory of quarks and gluons.

Set $\alpha_s \to 1/2$ and $m_D \to$ a reasonable value

$$\left(\frac{\Gamma_s}{\tau}\right) \approx 0.4 \frac{1}{\tau T}$$

Strongly Coupled conformal N=4 SYM – Son, Starinets, Policastro

No kinetic theory exists. Like most real liquids.

$$\left(\frac{\Gamma_s}{\tau}\right) = \frac{1}{3\pi} \frac{1}{\tau T} \approx 0.11 \frac{1}{\tau T}$$

Phenomenology - Molnar

Found could fit elliptic flow $v_2(p_T)$ only when

•
$$\frac{dN}{d\eta}=1000$$
, $\sigma_0=10\div 20$, and $\tau_o=0.1$ fm.

$$\Gamma_s = 0.421 \frac{1}{n\sigma_0} \qquad \left(\frac{\Gamma_s}{\tau}\right) = 0.02 \div 0.04$$

Constant cross section. Independent of time!

Best Guess: (At time τ_0)

With

 $T_o \sim 300 \, \mathrm{MeV}$ and $\tau_0 \sim 1 \, \mathrm{fm}$

Find:

$$\left(\frac{\Gamma_s}{\tau}\right) \approx 0.1 - 0.4$$

How does $\frac{\Gamma_s}{\tau}$ evolve?

Thermalization: How does Γ_s/ au evolve?

- 1. Bjorken Expansion | Scale Invariant Cross Section: $\sigma \sim \frac{\alpha_s^2}{T^2}$
 - \bullet When entropy is conserved: $T \sim \frac{1}{\tau^{1/3}}$

$$\frac{\Gamma_s}{\tau} \sim \frac{\text{\#}}{\tau T} \sim \text{\#} \frac{1}{\tau^{2/3}}$$

⇒ rapid thermalization

- 2. Bjorken Expansion Constant Cross Section: $\sigma = \sigma_0$
 - ullet When particle number is conserved: $au n \sim {\sf Const}$

$$rac{\Gamma_s}{ au} \sim rac{\ell_{m.f.p.}}{ au} \sim rac{1}{ au n \sigma_0} \sim ext{Const}$$

Constant thermalization

Spherical Expansion | Scale Invariant Cross Section: $\sigma \sim \frac{\alpha_s^2}{T^2}$

 \bullet Entropy conservation: $(sV)\sim$ Const and $s\sim T^3.$ Then $T\sim \frac{1}{\tau}.$

$$rac{\Gamma_s}{ au} \sim rac{ extit{\#}}{ au T} \sim ext{Const}$$

→ Constant thermalization

Spherical Expansion | Constant Cross Section: σ_0

 \bullet Number Conservation: $(nV) \sim$ Const. $n \sim \frac{1}{\tau^3}$

$$\frac{\Gamma_s}{\tau} \sim \frac{\ell_{m.f.p.}}{\tau} \sim \frac{1}{\tau n\sigma_0} \sim \frac{\tau^2}{\sigma_0}$$

 \Longrightarrow rapid breakup.

Summary:

	σ	1 D Expansion	3 D Expansion
$\eta \propto \textbf{T}^3$	$rac{lpha_{ extsf{s}}}{ extsf{T}^2}$	++~ $\frac{1}{\tau^{2/3}}$	Const.
$\eta \propto \textbf{T}$	σ_{0}	Const.	$- \sim \frac{\tau^2}{\sigma_0}$

Three models of viscosity:

ullet A scale free model: $\eta \propto T^3$

$$\eta = \frac{1}{5} s$$

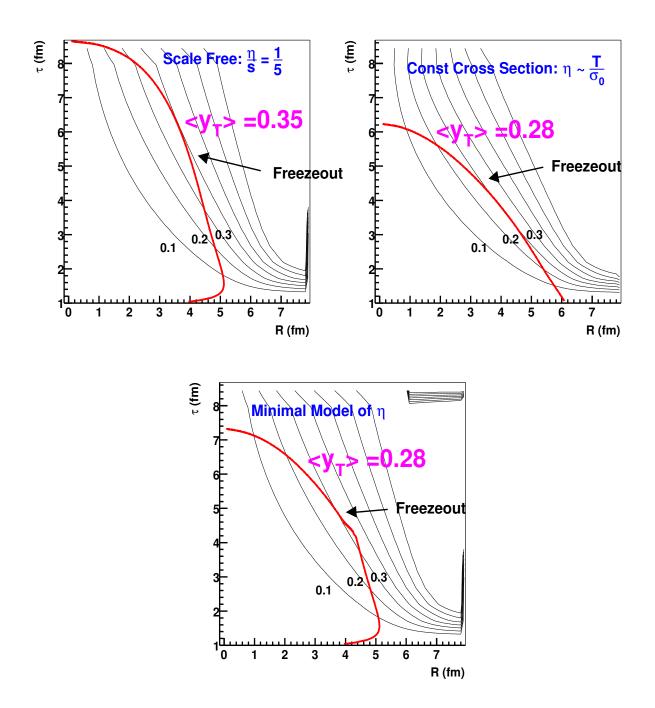
Constant cross section:

$$\eta=1.2\,rac{T}{\sigma_0}$$
 with $\sigma_0=10$ mb.

ullet A minimal model: $e_c=1\,\mathrm{GeV/fm^3}$

$$\eta = \begin{cases} 1.2 \frac{\mathrm{T}}{\sigma_0} & \text{for } e < e_c \\ \frac{1}{5} \mathrm{s} & \text{for } e > e_c \end{cases}$$

Compare the three models of viscosity:



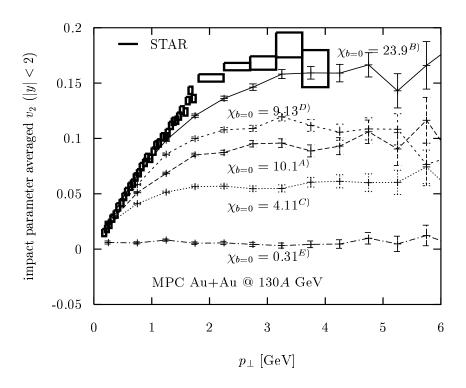
The minimal model of η and the Const X.-section model of η yield the same amount of radial flow.

Conclusions:

- Viscosity does not change the ideal hydrodynamic solution particularly much.
- Having a viscosity which is proportional to $\eta \sim T^3$ with a physically reasonable but small value of η/s reproduces the radial flow found by Denes with large cross sections and unphysical values of η/s .
- TO DO: Elliptic Flow
- TO DO: Compare viscous solutions with kinetic theory.

Solution of the Boltzmann Equation (BE): Denes Molnar

1000 Classical Massless Particles with Constant X-Sections $\sigma_0 pprox 10-20\,\mathrm{mb}$



- ullet The BE predicted a flattening of v_2 at high p_T .
- ullet The observed v_2 breaks down consistently with viscous effects.
- 1. Can we understand this curve analytically?
- 2. Why do the cross sections need to be

HUGE!??

How does viscosity change the thermal spectrum?

Perfect Thermal Equilibrium ℓ_{mfp}/L = 0

$$f_o = \frac{1}{\exp\left(\frac{p \cdot u}{T}\right) - 1}$$

Non-Equilibriium Effects $\ell_{mfp}/L \ll 1$ modify this distribution

- Finite size of the system
- Finite cross sections
- Expansion Dynamics Gradients in Velocity

$$f \to f_o + \delta f$$

Calculate the non-equilibrium corrections δf .

These corrections modify Spectra and $v_2(p_T)$.

Want to calculate δf : Use the linearized Boltzmann equation

$$\frac{p^{\mu}}{E}\partial_{\mu}f_{p} = \int_{1,2,3} d\Gamma_{12\to3p} (f_{1}f_{2} - f_{3}f_{p})$$

Linearize the Boltzmann equation:

- ullet Substitute $f o f^e + \delta f$ with $f^e_p = e^{-pu/T}$
- Keep first order in gradients.
- ullet Use equilibrium: $f_1^ef_2^e=f_3^ef_4^e$

$$\frac{p^{\mu}}{E} \partial_{\mu} f_{p}^{e} = \int_{1,2,3} d\Gamma_{12 \to 3p} f_{1}^{e} f_{2}^{e} \left[\frac{\delta f_{1}}{f_{1}^{e}} + \frac{\delta f_{2}}{f_{2}^{e}} - \frac{\delta f_{3}}{f_{3}^{e}} - \frac{\delta f_{4}}{f_{4}^{e}} \right]$$

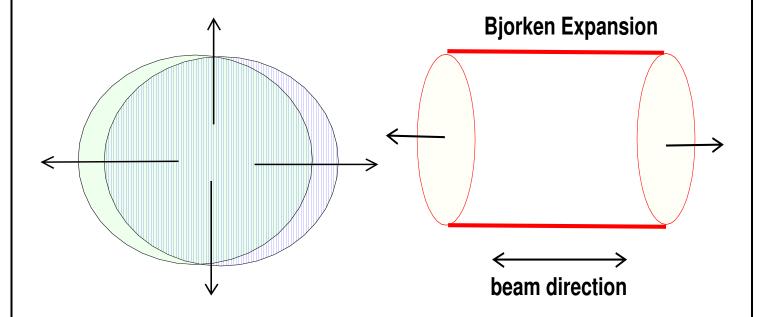
This is an integral equation for δf .

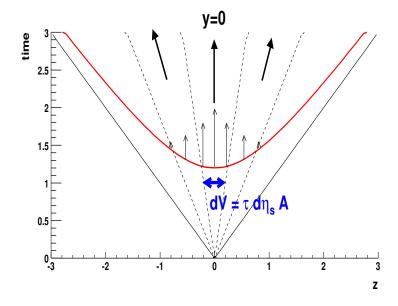
ullet Approximate δf with the first Chapman Enskog approximation:

$$\delta f = f_o(\frac{p \cdot u}{T})$$
 C_{Γ_s} $\frac{p_\mu p_\nu}{T^2}$ $O_{\frac{1}{\tau}}$

Viscous corrections grow as: $p_T^2 imes rac{\Gamma_s}{ au}$

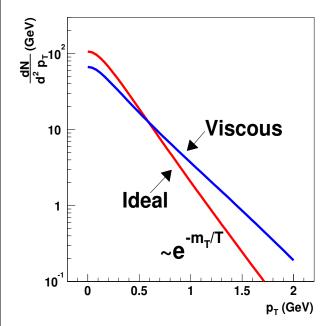
Parametrize Ideal Hydrodynamic Solutions:





Now compute the thermal spectrum of particles at y=0:

Viscous corrections to the spectrum: Qualitative



The transverse pressure is larger with viscosity:

$$T_{zz} = p - \frac{4}{3} \frac{\eta}{\tau}$$

$$T_{xx} = T_{yy} = p + \frac{2}{3} \frac{\eta}{\tau}$$

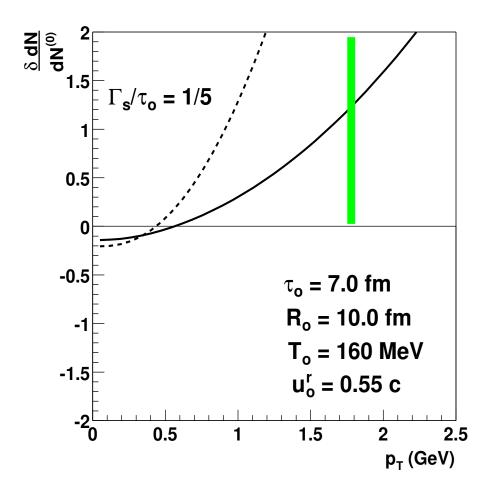
Viscous corrections to p_T spectrum: Quantitative

$$dN_o + \delta dN = \int p^{\mu} d\Sigma_{\mu} f_o + \delta f$$

Now you can do the calculation:

$$\frac{\delta dN}{dN_o} = \frac{\Gamma_s}{4\tau} \left\{ \left(\frac{p_T}{T} \right)^2 - \left(\frac{m_T}{T} \right)^2 \frac{1}{2} \left(\frac{K_3(\frac{m_T}{T})}{K_1(\frac{m_T}{T})} - 1 \right) \right\}
\rightarrow \frac{\Gamma_s}{4\tau} \left(\frac{p_T}{T} \right)^2$$

When the correction becomes O(1) we are supposed to stop.

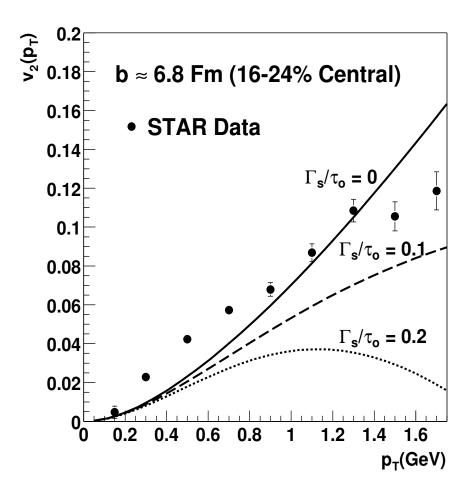


$$\frac{\delta dN}{dN^{(0)}} \equiv \frac{\frac{dN^{(1)}}{p_T dp_T dy}}{\frac{dN^{(0)}}{p_T dp_T dy}}$$

The maximum possible p_T accessible to Hydrodynamics is $\sim 1.8~{\rm GeV}$ – A couple of times T_{eff} .

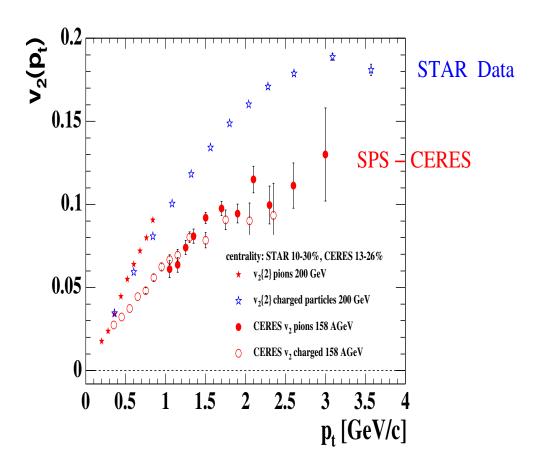
Does viscosity set the scale for the turnover?

ullet Once δf is computed viscous corrections to all observables of the "Blast Wave Model" may be computed.



- The shape is not perfect. But viscosity does set the scale.
- More complete calculations are in the works.

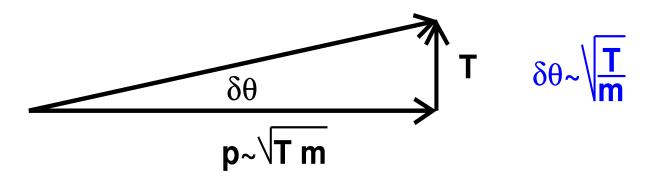
Compare the SPS and RHIC



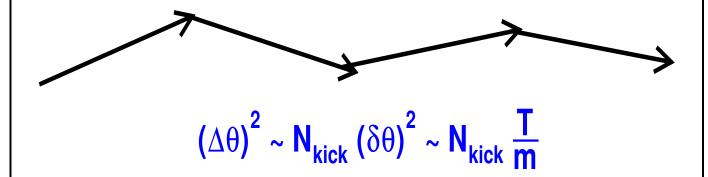
- v_2 flattens earlier at the SPS?
- What about forward rapidities at RHIC?

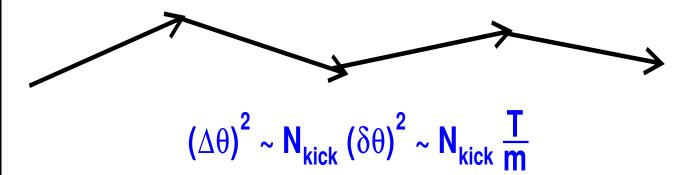
Will the charm quark thermalize?

In collaboration with Guy Moore



- The collision only scarcely changes the direction of the charm quark
- ullet The charm quark undergoes a random walk suffering many collisions provided $\ell_{m.f.p} \ll L$





• For equilibration we need:

$$(\Delta\Theta)^2 \sim 1$$
 or $N_{
m kick} \sim {M\over T}$

Thus for charm equilibration we have:

$$au_R^{
m charm} \sim rac{M}{T} au_R^{
m light} \ \sim rac{M}{T}rac{\eta}{e+p}$$

It takes a longer time to equilibrate charm. If you think you know η you should be able to compute the charm spectrum.

Langevin description of heavy quark thermalization

ullet When the number of kicks to the heavy quark is large we can replace the interaction by random kicks: $\xi(t)$.

$$\langle \xi(t)\xi(t')\rangle = \kappa\delta(t-t')$$
.

- ullet κ is the mean squared momentum transfer per time.
- Add a damping term $-\eta_D p$.

$$\frac{dp}{dt} = \xi(t) - \eta_D p$$

 η_D^{-1} is the equilibration time $\tau_R^{\rm charm}$

Relating the random noise to the damping: FDT

$$\frac{dp}{dt} = \xi(t) - \eta_D p$$

The solution to this equation is simple:

$$p(t) = p_0 e^{-\eta_D t} + \int_{-\infty}^t dt' e^{\eta_D (t'-t)} \xi(t'),$$

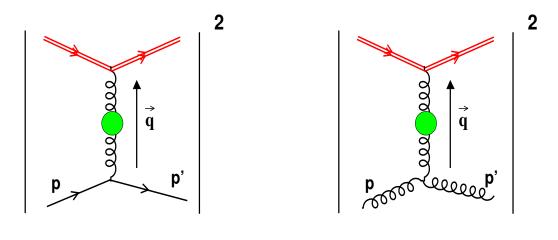
Now in equilibrium statistical mechanics:

$$3MT = \lim_{t \to \infty} \left\langle p^2(t) \right\rangle = \frac{\kappa}{2\eta_D}$$

Once I compute κ , I know the relaxation time η_D^{-1}

Computing κ in the perturbative QGP

 \bullet κ is the average momentum squared transferred to the particle per unit time:



$$\kappa = \int_{\mathbf{p},\mathbf{p}',\mathbf{q}} \mathbf{q}^2 \left[f(p) (1 + f(p')) \left| M_{\mathsf{glue}} \right|^2 \right]$$

The Relaxation Time Is:

$$\eta_D^{-1} = \text{A Number} \times \frac{M}{T} \times \frac{\eta}{e+p}$$

$$= \underbrace{6}_{\text{BIG!}} \times 6 \times (0.1 \div 0.4 \text{ fm})$$

$$\approx 3 \div 12 \text{ fm}$$

Why is the factor big?

- $\bullet\,$ The shear viscosity relaxes the tensor $T^{\mu\nu}$
 - angular momentum $\ell=2$.
- Diffusion relaxes a vector J^{μ}
 - angular momentum $\ell=1$
- Roughly:

$$au_R \sim rac{1}{\ell \, (\ell+1)}$$
 – Gives a factor of $pprox 3$

• Diffusion relates to Quarks while shear relates to gluons. Find an additional factor of charges: $C_A/C_F \approx 2.5$

Equilibration in an expanding medium

• The relevant parameter is:

$$\chi = \int_{\tau_0}^{\tau} d\tau' \eta_D(\tau')$$

• For a Bjorken expansion:

$$T \propto \left(rac{ au}{ au_0}
ight)^{-1/3} \quad ext{and} \quad \eta_D \propto T^2 \propto \left(rac{ au}{ au_0}
ight)^{-2/3}$$

 χ increases slowly with time: $\chi \propto \left(rac{ au_0}{ au}
ight)^{1/3}$

ullet Substituting - $au_0 pprox 0.5\,\mathrm{fm}, \ au_f pprox 6\,\mathrm{fm}, \ T_0 pprox 300\,\mathrm{MeV}$

$$\chi \approx 0.2 \div 0.8$$
 for $\frac{\eta}{s} \approx 0.1 \div 0.4$

The charm quark may thermalize slightly

How to calculating the change in the spectrum?

 Rewrite the Langevin equation as a Boltzman-Fokker Plank Equation.

$$\underbrace{\frac{\partial P}{\partial t} + \frac{p^i}{m} \frac{\partial P}{\partial x^i}}_{\text{Boltzmann Drift Term}} = \underbrace{\left[\frac{\partial}{\partial p_i} \eta_D p_i + \frac{\partial^2}{\partial p^2} MT \; \eta_D\right] P(p,\tau)}_{\text{Momentum Drift and Diffusion Term}}$$

• Can then find the greens function of the Fokker Plank Equation for a Bjorken Expansion:

$$P(p|p_0,\tau,\tau_0)$$
.

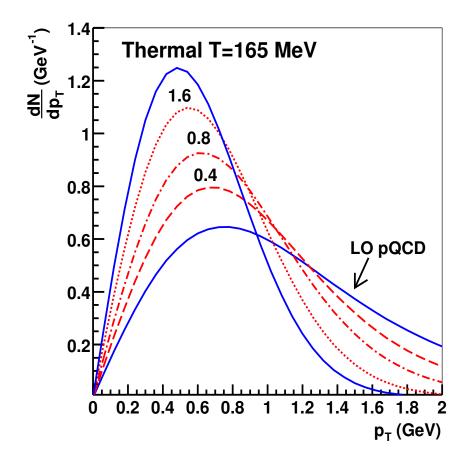
• $P(p|p_0, \tau, \tau_0)$ is the probability to find a heavy quark with momentum p at time τ given that it had momentum p_0 at time τ_0 .

$$P(p|p_0, t, t_0) \sim \frac{1}{\sqrt{2\pi M T_{\perp}(\chi, \tau)}} \exp \left[-\frac{(p - p_0 e^{-\chi})^2}{2M T_{\perp}(\chi, \tau)}\right]$$

Now Convolve the Green's Function with the initial conditions

$$\frac{d^2N}{d^2p_{\perp}} = \int d^2p_{\perp}^0 P(p_{\perp}|p_{\perp}^0, \tau, \tau_0) \frac{dN^{(0)}}{d^2p_{\perp}^0}$$

ullet The spectrum as a function of $\chi=\int_{ au_0}^{ au_f}d au'\eta_D(au')$



• $\chi \approx 0.0 \div 0.8$

If any modification of the low p_T spectrum is seen it suggests that the viscosity is quite small

Conclusions:

- In perturbation theory the relaxation of heavy quarks is a factor of 40 different from the relaxation of viscosity.
- The reasons seem "generic"
- Given an estimate of the $\frac{\eta}{e+p} \approx \frac{1}{5T}$ we expect only small modifications to the charm quark spectrum. Can they be seen?
- If the shear viscosity is $\frac{\eta}{e+p} = \frac{1}{4\pi T}$ then $\chi \approx 0.8$. Some modifications to the spectrum should be visible.
- Look at the slope of the spectrum between \sqrt{MT} and M.
- For a given value of χ what is the elliptic flow?

If charm hadrons show the same v_2 as all others then hydrodynamics is not responsible for the observed elliptic flow.